Этапы обмена элементов кристаллической решетки апатитов
Образуясь в растворах, кристаллы апатитов могут изменяться за счёт обмена с ионами, находящимися в этом же растворе. В живых системах это свойство апатитов делает их высокочувствительными к ионному составу крови и межклеточной жидкости, а он, в свою очередь, зависит от характера пищи и состава потребляемой воды. Сам процесс обмена элементов кристаллической решётки протекает в несколько этапов, каждый из которых имеет свою скорость.
Первый этап протекает довольно быстро – в течение нескольких минут. Это обмен посредством диффузии между гидратной оболочкой кристалла и подвижной жидкостью, в которую погружен кристалл. Обмен ведёт к повышению концентрации отдельных ионов в непосредственной близости кристалла. В этом этапе участвуют многие ионы, разные по размерам и свойствам.
На втором этапе идёт обмен между ионами гидратной оболочки и поверхностью кристаллов. Здесь происходит отрыв элементов с поверхности кристалла и замена их на ионы, поступающие из гидратной оболочки. В процесс преимущественно включаются ионы кальция, магния, стронция, натрия, фосфорной и угольной кислот, фтора, хлора, иногда другие приблизительно равные им по размерам ионы. Многим ионам данный этап не под силу. Длительность этапа – несколько часов.
На третьем этапе происходит проникновение ионов вглубь кристаллической решётки. Это самый медленный процесс, длится недели, месяцы, иногда более года. Этап проходит в форме изоморфного замещения или заполнения вакантных мест. Главные здесь ионы кальция, магния, фосфата, стронция, фтора.
стадии минерализации костной ткани
Нуклеация – начало образования кристаллов
В основе минерализации костного скелета и зубных тканей позвоночных лежит образование кристаллов с участием фосфатов кальция. В патологических условиях свыше 20 других солей могут подвергаться кристаллизации в составе зубных, мочевых, жёлчных камней.
Внеклеточная жидкость, из которой происходит осаждение соли, представляет пересыщенный раствор фосфата кальция. Процесс осаждения можно разделить на 2 стадии: вначале идёт нуклеация, т.е. образование плотного остатка с точечными ядрами кристаллов, а затем – рост кристаллов из этого ядра.
Различают 2 типа нуклеации.
В обоих случаях формируются небольшие ядра кристаллов 0,5–2,0 нм в диаметре.
Процесс гомогенной нуклеации может быть представлен следующим образом. Вначале небольшое число ионов образует пары или триплеты – так называемые кластеры. Кластеры могут объединяться между собой. Пока новые кластеры малы, они неустойчивы, быстро распадаются и вновь образуются. Когда имеется пересыщенный раствор, размер радиуса отдельных кластеров может достигнуть и даже превысить критический радиус кристалла (Rкрит). Такие кластеры не распадаются, а становятся источниками дальнейшего роста кристаллов. В целом, если радиус ядра меньше Rкрит, то зачаток кристалла растворяется, если выше – идёт рост кристалла.
В ходе гетерогенной нуклеации рост кристаллов «АБ» (например, А – кальций, Б – фосфат) может начаться, если в супернасыщенный раствор добавить другой кристалл «В» (матрицу). Образование кластера определённой величины (ядра) для роста кристаллов «АБ» на поверхности кристалла «В» происходит в 3 стадии: (1) поверхностная адсорбция компонентов А и Б, (2) их диффузия на поверхности, (3) включение в кластер. Матрица «В» при этом может играть роль направляющей в образовании кристаллов «АБ». Такой феномен называют «эпитаксис», а процесс образования критических кластеров называют эпитаксической нуклеацией.
Рост ионных кристаллов
Механические свойства таких сложных структур как кость и эмаль, состоящих из органических и неорганических компонентов, зависят от величины кристаллов.
В отличие от этапа нуклеации, для которого требуется значительная пересыщенность ионов в растворе, дальнейший рост кристаллов требует значительно более низких концентраций участников процесса. При этом используются другие механизмы, которые включают так называемый «спиралевидный рост». На образовавшемся ядре возникают спиралевидые структуры, рост которых идёт по обычному принципу добавления новых ионов. Шаг такой спирали равен высоте одной структурной единицы кристалла.
Рост кристалла очень чувствителен к присутствию других ионов и молекул, которые выполняют роль ингибиторов кристаллизации. Причем, их концентрация может быть небольшой. Эти молекулы оказывают влияние не только на скорость, но и форму, и направление роста кристаллов. С другой стороны, если такие же молекулы добавить к другой системе, в которой кристалл растворяется, степень растворения обычно не изменяется.
Однако некоторые комплексные неорганические ионы, ингибирующие рост кристаллов, способны также уменьшать и скорость их растворения. Эти соединения адсорбируются на поверхности кристалла и тормозят адсорбцию других ионов. Подобными веществами являются: гексаметафосфат натрия – тормозит преципитацию карбоната кальция; пирофосфаты, полифосфаты, полифосфонаты и некоторые белки слюны – тормозят рост кристаллов и нуклеацию гидроксиапатитов.
Расположение атомов и молекул в кристалле можно исследовать при помощи рентгеноструктурного анализа кристаллических решеток. Частички, из которых построен кристалл, называются элементарными ячейками кристалла. Как правило, ячейки располагаются в кристалле симметрично. Сеточка, образуемая ячейками, называется матрицей кристалла. Имеется 7 разных категорий ячеек кристаллов и, соответственно, 7 типов кристаллов: моноклинные, триклинные, тригональные, тетрагональные, гексагональные, орторомбические и кубические.
Особенности механизмов минерализации в тканях
Минерализация в тканях – сложный постоянно протекающий процесс. Наиболее ранняя теория минерализации тканей предложена в 1923 году. В соответствии с ней для образования кристаллов очень важно локальное высвобождение фосфата из органических молекул при участии щелочной фосфатазы. Однако эта теория не объясняла высокую активность фермента во многих неминерализующихся тканях.
К 1958 году было показано: внеклеточная жидкость пересыщена солями фосфата кальция. Стало ясно, что кальцификации должна предшествовать нуклеация. После выяснения важности гетерогенного типа нуклеации первым предполагаемым кандидатом на роль неподвижной фазы стал коллаген, а рост кристаллов гидроксиапатита стали представлять по механизму эпитаксиса.
В настоящее время считается, что минерализацию инициирует не сам коллаген, а связанные с ним молекулы. На роль таких молекул претендуют обладающие анионными свойствами gla-белки, фосфопротеины, протеогликаны. Например, хондрокальцин, локализованный в минерализирующемся фронте хряща, является кальций-связывающим белком. Остеонектин, известный как фосфогликопротеин костной ткани, связывает одновременно гидроксиапатиты и коллаген, обеспечивая нуклеацию апатита из раствора фосфата кальция. Другие Са-связывающие белки также могут иметь отношение к процессу минерализации тканей.
В зонах минерализации кости (по данным электронной микроскопии) выявляются внеклеточные мембраносвязанные тельца, содержащие кристаллы апатита. Полагают, что именно эти пузырьки являются зонами нуклеации, а волокна коллагена лишь пространственно ориентируют рост кристаллов. Пузырьки содержат активную фосфатазу и фосфолипиды. Фосфатаза увеличивает локальную концентрацию фосфата, расщепляя органические фосфосодержащие соединения. Однако такие пузырьки не обнаружены при минерализации эмали, дентина или цемента зуба.
Факторы регуляции минерализации
Для минерализации костей, твёрдых тканей зуба необходимо поддержание определённых концентраций ионов кальция и неорганического фосфата в плазме крови, слюне и надкостнице. Нормальное протекание этих процессов обеспечивается тем, что концентрация Са2+ в крови варьирует в очень узких пределах: 2,25-2,64 ммоль/л – у взрослых и 2,74-3,24 ммоль/л – у детей. Более широкие колебания характерны для неорганического фосфата: 0,64-1,29 ммоль/л – у взрослых, 1,29-2,26 ммоль/л – у детей. В механизмы регуляции гомеостаза этих ионов включены три гормона – паратиреоидный (паратгормон, ПТГ, паратиреокринин), кальцитонин (тирокальцитонин, КТ) и метаболиты витамина D (кальцитриолы – 1,25(ОН)2D3 и 24,25(ОН)2D3), работающие как стероидные гормоны.
Влияние пирофосфата на кости (см выше про бифосфонаты зеленый цвет)
К соединительной ткани
Образование олигосахаридной части N-связанных белковоуглеводных комплексов происходит отдельно от белковой части. Ведущую роль в синтезе таких олигосахаридов занимает долихол – полиизопреновое соединение, состоящее из 17-21 изопреновых единиц
Структура долихола
Долихолкиназа превращает долихол (Dol) в долихолфосфат (Dol-P) (рис. 3), который вступает в реакцию с УДФ-N-ацетил-глюкозамином (UDP-GlcNAc) с образованием долихол-пирофосфат-N-ацетил-глюкозамина (GlcNAc-P-P-Dol). К этому соединению присоединяется вторая молекула N-ацетил-глюкозамина, затем молекула маннозы (β-связь, донор маннозы – ГДФ-манноза) и последовательно другие маннозы (α-связь, донор маннозы – Man-P-Dol долихол-манноза). В последнюю очередь добавляются периферические остатки глюкозы (донор глюкозы – долихол-глюкоза Glc-P-Dol) (рис).
Рис. 3. Роль долихолфосфата в синтезе углеводной части белковоуглеводных комплексов
Получившийся олигосахарид переносится на АСН белка, расположенного на люминальной поверхности эдоплазматической сети. Катализируется этот процесс мембраносвязанным ферментом – олигосахарид трансферазой. АСН, с которым соединяется олигосахарид, входит в состав трипептида кόрового белка АСН-Y-СЕР(ТРЕ), где Y – любая аминокислота кроме ПРО или АСП.
Гликозилируются, в основном, секретируемые белки. Белки цитозоля обычно не гликозилируются. Продукт трансферазной реакции, долихолдифосфат (Dol-P-Р), при помощи фосфатазы превращается в долихолфосфат и может вновь использоваться в реакциях переноса (рис. 3).
Ряд соединений способен ингибировать различные этапы синтеза гликопротеинов. При этом увеличивается чувствительность получаемых белков к протеолизу, хотя механизмы их секреции значительно не нарушаются.
Синтез протеогликанов
Синтез гликозаминогликанов обеспечивают фибробласты. Поскольку гликозаминогликаны в организме человека в чистом виде не встречаются, а всегда связаны с белком, то пептидный компонент протеогликанов синтезируется на полирибосомах, связанных с эндоплазматическим ретикулумом. Пептидная цепь пронизывает мембрану и наращивается в сторону полости эндоплазматической сети, где начинается синтез углеводной части протеогликанов. Гликозаминогликаны связываются с белком через гидроксильные группы серина (рис. 1). Здесь же в полости ретикулума происходит и сульфатирование углеводного компонента. В процессе синтеза вновь образованные молекулы перемещаются к аппарату Гольджи, где они включаются в секреторные гранулы, и происходит экзоцитоз в составе этих гранул.
К полипептидной цепи последовательно прикрепляются хондроитинсульфат или кератансульфат, к которым постепенно добавляются аналогичные молекулы, наращивая углеводные цепи в стороны и образуя фигуру, по форме напоминающую бутылочный «ёршик». В межклеточном веществе такие соединения прикрепляются одним концом своей полипептидной цепи перпендикулярно к длинной молекуле гиалуроновой кислоты. В конечном виде протеогликаны представляют собой сложные надмолекулярные агрегаты. Эти комплексы выглядят как большая «щётка-ёршик», состоящая из малых «щёточек».
Например, в протеогликане из хряща (рис. 4) олигосахаридные цепи кератансульфата и хондроитинсульфата ковалентно связаны с полипептидным остовом субъединиц сердцевинного белка. В состав агрегата обычно входит около 100 таких протеогликановых мономеров. Каждый сердцевинный белок одним своим концом нековалентно соединён через два специальных связующих белка с длинной нитевидной молекулой гиалуроновой кислоты. Связующие белки стабилизируют агрегат, так как одновременно фиксируют и сердцевинный белок, и цепь гиалуроновой кислоты. Длина цепи гиалуроновой кислоты бывает самой разной (от 420 нм до 4200 нм). Молекулярная масса такого сложного комплекса может достигать 108 Да и более, а занимаемый им объём равен объёму бактериальной клетки.
Природные формы фосфатов кальция
Витлокит – одна из форм безводного фосфата трикальций фосфата – βСа3(PO4)2. Витлокит содержит дивалентные ионы (Mg2+ Mn2+ или Fe2+), которые входят в состав кристаллической решётки, например, (СаMg)3(РО4)2. Около 10 % фосфата в нём находится в форме HPO42–. В организме минерал встречается редко. Он образует ромбические кристаллы, которые обнаруживаются в составе зубных камней и в зонах кариозного повреждения эмали.
Монетит (CaHPO4) и брушит (CaHPO4·2H2O) – вторичные соли фосфорной кислоты. Также редко встречаются в организме. Брушит обнаружен в составе дентина, зубных камней. Монетит кристаллизуется в форме треугольных пластинок, но иногда бывают палочки и призмы. Кристаллы брушита имеют клиновидную форму. Растворимость кристаллов монетита зависит от рН и быстро увеличивается при рН ниже 6,0. Растворимость брушита в этих условиях также увеличивается, но в ещё большей степени. При нагревании брушит превращается в монетит. При долгом хранении оба минерала гидролизуются в гидроксиапатит Ca10(PO4)6(OH)2.
Соответственно, наряду с монокальцийфосфатом в составе аморфных солей кости, зуба, зубного камня встречаются промежуточные гидратные ди-, три-, тетракальцийфосфаты. Кроме того, здесь присутствует кальций-пирофосфата дигидрат. Аморфная фаза кости является мобильным депо минералов в организме.
Октакальций фосфат Ca8(HPO4)2(PO4)4·5H2O, его формулу изображают также в виде Са8Н2(РО4)6·5Н2О. Он представляет собой главное и последнее промежуточное связующее звено между кислыми фосфатами – монетитом и брушитом, и основной солью – гидроксиапатитом. Подобно брушиту и апатиту он входит в состав кости, зуба, зубных камней. Как видно из формулы, октакальций фосфат содержит кислый фосфатный ион, но не имеет гидроксильных. Содержание воды в нём колеблется в широких пределах, но чаще 5H2O. По своей структуре он напоминает кристаллы апатита, имеет слоистое строение с чередованием слоёв соли толщиной 1,1 нм и слоёв воды толщиной 0,8 нм. Учитывая тесную связь с апатитами, он играет важную роль в нуклеации апатитных солей. Кристаллы октакальций фосфата растут в форме тонких пластинок до 250 мкм длиной. Подобно монетиту и брушиту октакальций фосфат нестабилен в воде, но именно он наиболее легко гидролизуется в апатит, особенно в тёплом щелочном растворе. Низкие концентрации фтора (20-100 мкг/л) резко ускоряют скорость гидролиза, следовательно ионы F– необходимы для отложения апатитов в плотных тканях.
Апатиты. Апатиты имеют общую формулу Ca10(PO4)6X2, где X – это чаще всего OH– или F–. Фторапатиты Ca10(PO4)6F2 широко распространены в природе, прежде всего, как почвенные минералы. Их используют для получения фосфора в промышленности. Гидроксиапатиты Ca10(PO4)6(OH)2 преобладают в животном мире. Они являются основной формой, в которой фосфаты кальция присутствуют в костях и зубах. Гидроксиапатиты образуют очень стабильную ионную решётку (температура плавления более 1600º С), ионы в ней удерживаются за счёт электростатических сил и тесно контактируют между собой. Фосфат-ионы РО43– имеют наибольшие размеры, поэтому занимают доминирующее место в ионной решётке. Каждый фосфат-ион окружён 12-ю соседними ионами Са2+ и ОН–, из которых 6 ионов находятся в том же слое ионной решётки, где расположен ион РО43–, а в выше- и нижележащих слоях ионной решётки расположено ещё по 3 иона. Идеальный гидроксиапатит образует кристаллы, которые «на срезе» имеют гексагональную форму (рис. 31). Каждый кристалл покрыт гидратной оболочкой, между кристаллами имеются пространства. Размеры кристаллов гидроксиапатита в дентине меньше, чем в эмали.
Рис. 31. Гексагональная модель кристаллов гидроксиапатита
Апатиты являются довольно устойчивыми соединениями, но способны обмениваться с окружающей средой. В результате в решётке кристаллов гидроксиапатитов появляются другие ионы. Однако лишь некоторые ионы могут включаться в структуру гидроксиапатитов. Преимущественным фактором, определяющим возможность замены, является размер атома. Схожесть в зарядах имеет второстепенное значение. Такой принцип замены носит название изоморфного замещения, в ходе которого поддерживается общее распределение зарядов по принципу: Сa10-х(HPO4)х(PO4)6-х(OH)2-х, где 0<х<1. Потеря ионов Ca2+ частично компенсируется потерей ионов OH– и присоединением ионов H+ к фосфату.
Это приводит к изменению формы и размеров кристаллов, что отражается на свойствах гидроксиапатитов. Реакции изоморфного замещения ионов существенно влияют на прочность и рост кристаллов гидроксиапатита и определяют интенсивность процессов минерализации твёрдых тканей зуба.
Таблица 9. Замещаемые ионы и заместители в составе гидроксиапатитов
Замещаемые ионы |
Заместители |
Ca2+ |
Mg2+, Sr2+, Na+, |
PO43– |
НРО42–, CO32–, С6Н3О63– (цитрат), Н2РО4–, AsO33– |
OH– |
F–, Cl–, Br–, J–, реже: H2O, CO32–, О2 |
В кислой среде ионы кальция Cа2+ замещаются на протоны Н+ по схеме:
Са10(РО4)6(ОН)2 + 2Н+ → Са9Н2(РО4)6(ОН)2 + Cа2+.
В конечном итоге кислотная нагрузка ведёт к разрушению кристаллов.
Магний может вытеснять кальций или заменять вакантные места в составе кристаллов гидроксиапатита с формированием магниевого апатита:
Са10(РО4)6(ОН)2 + Mg2+ → Са9Mg(РО4)6(ОН)2 + Cа2+
Это замещение характеризуется уменьшением молярного коэффициента Са/Р и приводит к нарушению структуры и снижению резистентности кристаллов гидроксиапатита к неблагоприятным воздействиям физического и химического характера.
Кроме магниевого апатита в ротовой полости встречаются другие формы магниевых минералов: невберит – MgНРО4 · 3Н2О и струвит – MgНРО4 · 6Н2О. Они в небольшом количестве образуются вследствие наличия ионов магния в слюне и обнаруживаются в составе зубного налёта и камня по мере их созревания и минерализации.
Аналогично магнию, стронций может вытеснять или заменять вакантные места для кальция в кристаллической решётке гидроксиапатитов, образуя стронциевый апатит:
Са10(РО4)6(ОН)2 + Sr2+ → Са9Sr(РО4)6(ОН)2 + Cа2+.
Поступая в избыточном количестве, стронций хотя и вытесняет из кристаллической решётки кальций, но сам не удерживается в ней, что приводит к порозности костей. Этот эффект усугубляется недостатком кальция. Такие изменения характерны для болезни Кашина-Бека («уровская болезнь»), которая поражает людей, преимущественно в раннем детстве, живущих в долине реки Уров Забайкальского края, Амурской области и прилегающих провинциях Китая. Страдание начинается с болей в суставах, затем возникает поражение костной ткани с размягчением эпифизов, нарушаются процессы окостенения. Заболевание сопровождается короткопалостью. В эндемичных районах в почве и воде содержится в 2 раза меньше кальция и в 1,5-2,0 раза больше стронция, чем в норме. Существует и другая теория патогенеза «уровской болезни», согласно которой патология развивается в результате дисбаланса фосфатов и марганца в окружающей среде, что также характерно для данных районов. Вполне вероятно, что обе эти теории дополняют друг друга.
В местностях, загрязнённых радионуклидами, неблагоприятное значение стронциевого апатита для организма человека связано с возможностью депонирования радиоактивного стронция.
Са10(РО4)6(ОН)2 + НРО42– → Са10(НРО4)(РО4)5(ОН)2 + РО43–
Заряд катионов кальция в этом случае компенсируется анионами не полностью (важнее ионный радиус, а не заряд заместителя). Двойная замена приводит к неустойчивости иона Са2+, он может покинуть кристалл:
Са10(РО4)6(ОН)2 + 2НРО42– → Са9(НРО4)2(РО4)4(ОН)2 + Са2+ + 2РО43–
Карбонатный апатит. Замещение на карбонат-ион повышает коэффициент Са/Р апатитов, однако кристаллы становятся более рыхлыми и хрупкими.
Са10(РО4)6(ОН)2 + СО32– → Са10(РО4)5(СО3)(ОН)2 + РО43–
Интенсивность формирования карбонатапатитов зависит от общего количества бикарбонатов в организме, пищевого рациона и стрессовых нагрузок.
Са10(РО4)6(ОН)2 + 3 НСО3– +3Н+ → Са10(РО4)4(СО3)3(ОН)2 + 2Н3РО4
Са10(РО4)6(ОН)2 + 3СО32– → Са10(РО4)4(СО3)3(ОН)2 + 2РО43–
В целом, если основная соль кальция фосфата осаждается при комнатной температуре или температуре тела в присутствии карбонат иона или гидрокарбонат иона, то образующийся апатит будет содержать в своём составе несколько процентов карбоната или гидрокарбоната. Карбонат уменьшает кристалличность апатита и делает его более аморфным. Такая структура напоминает структуру апатитов костей или эмали. С возрастом количество карбонатапатитов увеличивается.
Из углерод-содержащих минералов кроме карбонатного апатита в полости рта встречаются гидрокарбонат кальция Са(НСО3)2 и веделит СаС2О4 · Н2О в качестве минорного компонента зубного камня.
В водной среде взаимодействие ионов F– с гидроксиапатитом зависит от концентрации фтора. Если содержание фтора сравнительно невысоко (до 500 мг/л), то происходят замены и образуются кристаллы гидроксифтор- или фторапатита:
Са10(РО4)6(ОН)2 + F– → Са10(РО4)6(ОН)F + ОН–
Са10(РО4)6(ОН)2 + 2F– → Са10(РО4)6F2 + 2ОН–
Гидроксифторапатит – Ca10(PO4)6(OH)F – промежуточный вариант между гидроксиапатитом и фторапатитом. Фторапатит – Ca10(PO4)6F2 – наиболее стабильный из всех апатитов, температура плавления 1680º С. Кристаллы фторапатита имеют гексагональную форму: ось a = 0,937 нм, ось c = 0,688 нм. Плотность кристаллов составляет 3,2 г/см3.
Обе реакции замещения в кристаллической решётке ионов ОН– на ионы F– резко повышают резистентность гидроксиапатитов к растворению в кислой среде. Это свойство гидроксифтор- и фторапатитов рассматривается как ведущий фактор в профилактическом действии фторидов в отношении кариеса. Таким же, но значительно меньшим эффектом обладают ионы цинка, олова. Наоборот, в присутствии ионов карбоната, цитрата растворимость кристаллов апатитов повышается:
Са10(РО4)6(ОН)2 + СО32– + 2Н+→ Са10(РО4)6 СО3 + 2Н2О
Вместе с тем, высокие концентрации ионов F– (более 2 г/л) разрушают кристаллы апатитов:
Ca10(PO4)6(OH)2 + 20 F– → 10 CaF2 +6 PO43– + 2 OH–.
Образующийся фторид кальция – СаF2 – нерастворимое соединение, может включаться в состав зубного налёта и зубного камня. Кроме того, в этих условиях ионы фтора будут связывать ионы кальция на поверхности зуба, препятствуя их проникновению в эмаль.
В составе зубного камня обнаруживается также восьмикальциевый фторапатит Са8(РО4)6F2, этот вид минерала формируется постепенно по мере старения камня.